Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Genet Med ; 26(2): 101013, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37924258

RESUMO

PURPOSE: RNF213, encoding a giant E3 ubiquitin ligase, has been recognized for its role as a key susceptibility gene for moyamoya disease. Case reports have also implicated specific variants in RNF213 with an early-onset form of moyamoya disease with full penetrance. We aimed to expand the phenotypic spectrum of monogenic RNF213-related disease and to evaluate genotype-phenotype correlations. METHODS: Patients were identified through reanalysis of exome sequencing data of an unselected cohort of unsolved pediatric cases and through GeneMatcher or ClinVar. Functional characterization was done by proteomics analysis and oxidative phosphorylation enzyme activities using patient-derived fibroblasts. RESULTS: We identified 14 individuals from 13 unrelated families with (de novo) missense variants in RNF213 clustering within or around the Really Interesting New Gene (RING) domain. Individuals presented either with early-onset stroke (n = 11) or with Leigh syndrome (n = 3). No genotype-phenotype correlation could be established. Proteomics using patient-derived fibroblasts revealed no significant differences between clinical subgroups. 3D modeling revealed a clustering of missense variants in the tertiary structure of RNF213 potentially affecting zinc-binding suggesting a gain-of-function or dominant negative effect. CONCLUSION: De novo missense variants in RNF213 clustering in the E3 RING or other regions affecting zinc-binding lead to an early-onset syndrome characterized by stroke or Leigh syndrome.


Assuntos
Doença de Leigh , Doença de Moyamoya , Acidente Vascular Cerebral , Humanos , Criança , Doença de Moyamoya/genética , Doença de Leigh/complicações , Fatores de Transcrição/genética , Ubiquitina-Proteína Ligases/genética , Zinco , Predisposição Genética para Doença , Adenosina Trifosfatases/genética
2.
Rev Med Suisse ; 19(815): 358-361, 2023 Feb 22.
Artigo em Francês | MEDLINE | ID: mdl-36815325

RESUMO

Advances in bioanalytical technologies such as high throughput sequencing have paved the way for an exponential increase in the discovery of inborn errors of metabolism (IEM), which now sum up to more than 1800 IEM. These powerful technologies play a decisive role in shortening the diagnostic odyssey of patients affected by rare diseases. Yet, their added value in guiding therapy is still limited. Metabolic medicine remains a growing discipline that is particularly dependent on specialized laboratory analyses and has adopted early on the fundamental concept of a patient-centered care approach. The discovery of phenylketonuria (PKU) as a treatable cause of mental retardation has hence led to the implementation of newborn screening. With this example, we highlight some key concepts in caring for patients affected by IEM.


Les avancées bio-analytiques, dont l'avènement du séquençage à haut débit, ont conduit à une augmentation exponentielle du nombre d'erreurs innées du métabolisme (EIM) recensées : plus de 1800 à ce jour. Ces technologies sont déterminantes pour remédier à l'errance diagnostique de patients souffrant de maladies rares. En comparaison, leur apport pour guider la pratique thérapeutique est secondaire. La médecine des maladies métaboliques, discipline jeune et particulièrement tributaire d'analyses de laboratoire spécialisées, intègre fondamentalement une approche personnalisée du patient. Ainsi, la découverte de la phénylcétonurie (PCU) et de son traitement est à l'origine du dépistage néonatal pour prévenir le handicap mental. À l'aide de cet exemple, nous illustrons quelques aspects clés de la prise en charge de patients porteurs d'EIM.


Assuntos
Erros Inatos do Metabolismo , Fenilcetonúrias , Recém-Nascido , Humanos , Medicina de Precisão , Erros Inatos do Metabolismo/diagnóstico , Triagem Neonatal
3.
J Inherit Metab Dis ; 46(3): 482-519, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36221165

RESUMO

Glutaric aciduria type 1 is a rare inherited neurometabolic disorder of lysine metabolism caused by pathogenic gene variations in GCDH (cytogenic location: 19p13.13), resulting in deficiency of mitochondrial glutaryl-CoA dehydrogenase (GCDH) and, consequently, accumulation of glutaric acid, 3-hydroxyglutaric acid, glutaconic acid and glutarylcarnitine detectable by gas chromatography/mass spectrometry (organic acids) and tandem mass spectrometry (acylcarnitines). Depending on residual GCDH activity, biochemical high and low excreting phenotypes have been defined. Most untreated individuals present with acute onset of striatal damage before age 3 (to 6) years, precipitated by infectious diseases, fever or surgery, resulting in irreversible, mostly dystonic movement disorder with limited life expectancy. In some patients, striatal damage develops insidiously. In recent years, the clinical phenotype has been extended by the finding of extrastriatal abnormalities and cognitive dysfunction, preferably in the high excreter group, as well as chronic kidney failure. Newborn screening is the prerequisite for pre-symptomatic start of metabolic treatment with low lysine diet, carnitine supplementation and intensified emergency treatment during catabolic episodes, which, in combination, have substantially improved neurologic outcome. In contrast, start of treatment after onset of symptoms cannot reverse existing motor dysfunction caused by striatal damage. Dietary treatment can be relaxed after the vulnerable period for striatal damage, that is, age 6 years. However, impact of dietary relaxation on long-term outcomes is still unclear. This third revision of evidence-based recommendations aims to re-evaluate previous recommendations (Boy et al., J Inherit Metab Dis, 2017;40(1):75-101; Kolker et al., J Inherit Metab Dis 2011;34(3):677-694; Kolker et al., J Inherit Metab Dis, 2007;30(1):5-22) and to implement new research findings on the evolving phenotypic diversity as well as the impact of non-interventional variables and treatment quality on clinical outcomes.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Encefalopatias Metabólicas , Humanos , Glutaril-CoA Desidrogenase , Lisina/metabolismo , Encefalopatias Metabólicas/diagnóstico , Encefalopatias Metabólicas/genética , Encefalopatias Metabólicas/terapia , Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Erros Inatos do Metabolismo dos Aminoácidos/genética , Erros Inatos do Metabolismo dos Aminoácidos/terapia , Glutaratos/metabolismo
4.
Genet Med ; 24(8): 1781-1788, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35503103

RESUMO

PURPOSE: This paper aims to report collective information on safety and efficacy of empagliflozin drug repurposing in individuals with glycogen storage disease type Ib (GSD Ib). METHODS: This is an international retrospective questionnaire study on the safety and efficacy of empagliflozin use for management of neutropenia/neutrophil dysfunction in patients with GSD Ib, conducted among the respective health care providers from 24 countries across the globe. RESULTS: Clinical data from 112 individuals with GSD Ib were evaluated, representing a total of 94 treatment years. The median age at start of empagliflozin treatment was 10.5 years (range = 0-38 years). Empagliflozin showed positive effects on all neutrophil dysfunction-related symptoms, including oral and urogenital mucosal lesions, recurrent infections, skin abscesses, inflammatory bowel disease, and anemia. Before initiating empagliflozin, most patients with GSD Ib were on G-CSF (94/112; 84%). At the time of the survey, 49 of 89 (55%) patients previously treated with G-CSF had completely stopped G-CSF, and another 15 (17%) were able to reduce the dose. The most common adverse event during empagliflozin treatment was hypoglycemia, occurring in 18% of individuals. CONCLUSION: Empagliflozin has a favorable effect on neutropenia/neutrophil dysfunction-related symptoms and safety profile in individuals with GSD Ib.


Assuntos
Doença de Depósito de Glicogênio Tipo I , Neutropenia , Adolescente , Adulto , Compostos Benzidrílicos , Criança , Pré-Escolar , Glucosídeos , Doença de Depósito de Glicogênio Tipo I/tratamento farmacológico , Doença de Depósito de Glicogênio Tipo I/patologia , Fator Estimulador de Colônias de Granulócitos/uso terapêutico , Humanos , Lactente , Recém-Nascido , Neutropenia/tratamento farmacológico , Estudos Retrospectivos , Inquéritos e Questionários , Adulto Jovem
5.
Genet Med ; 24(7): 1583-1591, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35499524

RESUMO

PURPOSE: CTR9 is a subunit of the PAF1 complex (PAF1C) that plays a crucial role in transcription regulation by binding CTR9 to RNA polymerase II. It is involved in transcription-coupled histone modification through promoting H3K4 and H3K36 methylation. We describe the clinical and molecular studies in 13 probands, harboring likely pathogenic CTR9 missense variants, collected through GeneMatcher. METHODS: Exome sequencing was performed in all individuals. CTR9 variants were assessed through 3-dimensional modeling of the activated human transcription complex Pol II-DSIF-PAF-SPT6 and the PAF1/CTR9 complex. H3K4/H3K36 methylation analysis, mitophagy assessment based on tetramethylrhodamine ethyl ester perchlorate immunofluorescence, and RNA-sequencing in skin fibroblasts from 4 patients was performed. RESULTS: Common clinical findings were variable degrees of intellectual disability, hypotonia, joint hyperlaxity, speech delay, coordination problems, tremor, and autism spectrum disorder. Mild dysmorphism and cardiac anomalies were less frequent. For 11 CTR9 variants, de novo occurrence was shown. Three-dimensional modeling predicted a likely disruptive effect of the variants on local CTR9 structure and protein interaction. Additional studies in fibroblasts did not unveil the downstream functional consequences of the identified variants. CONCLUSION: We describe a neurodevelopmental disorder caused by (mainly) de novo variants in CTR9, likely affecting PAF1C function.


Assuntos
Transtorno do Espectro Autista , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Fosfoproteínas , Fatores de Transcrição , Regulação da Expressão Gênica , Heterozigoto , Humanos , Deficiência Intelectual/genética , Transtornos do Neurodesenvolvimento/genética , Fosfoproteínas/genética , Fatores de Transcrição/genética
6.
J Inherit Metab Dis ; 45(4): 719-733, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35358327

RESUMO

Patient registries for rare diseases enable systematic data collection and can also be used to facilitate postauthorization safety studies (PASS) for orphan drugs. This study evaluates the PASS for betaine anhydrous (Cystadane), conducted as public private partnership (PPP) between the European network and registry for homocystinurias and methylation defects and the marketing authorization holder (MAH). Data were prospectively collected, 2013-2016, in a noninterventional, international, multicenter, registry study. Putative adverse and severe adverse events were reported to the MAH's pharmacovigilance. In total, 130 individuals with vitamin B6 nonresponsive (N = 54) and partially responsive (N = 7) cystathionine beta-synthase (CBS) deficiency, as well as 5,10-methylenetetrahydrofolate reductase (MTHFR; N = 21) deficiency and cobalamin C (N = 48) disease were included. Median (range) duration of treatment with betaine anhydrous was 6.8 (0-9.8) years. The prescribed betaine dose exceeded the recommended maximum (6 g/day) in 49% of individuals older than 10 years because of continued dose adaptation to weight; however, with disease-specific differences (minimum: 31% in B6 nonresponsive CBS deficiency, maximum: 67% in MTHFR deficiency). Despite dose escalation no new or potential risk was identified. Combined disease-specific treatment decreased mean ± SD total plasma homocysteine concentrations from 203 ± 116 to 81 ± 51 µmol/L (p < 0.0001), except in MTHFR deficiency. Recommendations for betaine anhydrous dosage were revised for individuals ≥ 10 years. PPPs between MAH and international scientific consortia can be considered a reliable model for implementing a PASS, reutilizing well-established structures and avoiding data duplication and fragmentation.


Assuntos
Homocistinúria , Transtornos Psicóticos , Betaína/efeitos adversos , Cistationina beta-Sintase , Homocisteína , Homocistinúria/tratamento farmacológico , Humanos , Metilenotetra-Hidrofolato Redutase (NADPH2)/deficiência , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Espasticidade Muscular
7.
J Pediatr Intensive Care ; 10(4): 307-310, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34745706

RESUMO

In this article, we presented a teenager, in maintenance chemotherapy for leukemia, who was admitted for digestive symptoms related to a parasitic infection and required nutritional support with parenteral nutrition. After 6 weeks, his condition worsened with refractory shock of presumed septic origin, necessitating extracorporeal membrane oxygenation. Despite hemodynamic stabilization, his lactic acidosis worsened until thiamine supplementation was started. Lactate normalized within 12 hours. Thiamine is an essential coenzyme in aerobic glycolysis, and deficiency leads to lactate accumulation through anaerobic glycolysis. Thiamine deficiency is uncommon in the pediatric population. However, it should be considered in patients at risk of nutritional deficiencies with lactic acidosis of unknown origin.

8.
Mol Genet Metab ; 134(4): 287-300, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34799272

RESUMO

Glutaric aciduria type I (GA-I, OMIM # 231670) is an autosomal recessive inborn error of metabolism caused by deficiency of the mitochondrial enzyme glutaryl-CoA dehydrogenase (GCDH). The principal clinical manifestation in GA-I patients is striatal injury most often triggered by catabolic stress. Early diagnosis by newborn screening programs improved survival and reduced striatal damage in GA-I patients. However, the clinical phenotype is still evolving in the aging patient population. Evaluation of long-term outcome in GA-I patients recently identified glomerular filtration rate (GFR) decline with increasing age. We recently created the first knock-in rat model for GA-I harboring the mutation p.R411W (c.1231 C>T), corresponding to the most frequent GCDH human mutation p.R402W. In this study, we evaluated the effect of an acute metabolic stress in form of high lysine diet (HLD) on young Gcdhki/ki rats. We further studied the chronic effect of GCDH deficiency on kidney function in a longitudinal study on a cohort of Gcdhki/ki rats by repetitive 68Ga-EDTA positron emission tomography (PET) renography, biochemical and histological analyses. In young Gcdhki/ki rats exposed to HLD, we observed a GFR decline and biochemical signs of a tubulopathy. Histological analyses revealed lipophilic vacuoles, thinning of apical brush border membranes and increased numbers of mitochondria in proximal tubular (PT) cells. HLD also altered OXPHOS activities and proteome in kidneys of Gcdhki/ki rats. In the longitudinal cohort, we showed a progressive GFR decline in Gcdhki/ki rats starting at young adult age and a decline of renal clearance. Histopathological analyses in aged Gcdhki/ki rats revealed tubular dilatation, protein accumulation in PT cells and mononuclear infiltrations. These observations confirm that GA-I leads to acute and chronic renal damage. This raises questions on indication for follow-up on kidney function in GA-I patients and possible therapeutic interventions to avoid renal damage.


Assuntos
Taxa de Filtração Glomerular , Glutaratos/urina , Glutaril-CoA Desidrogenase/deficiência , Rim/patologia , Erros Inatos do Metabolismo/fisiopatologia , Animais , Biologia Computacional , Modelos Animais de Doenças , Feminino , Técnicas de Introdução de Genes , Humanos , Recém-Nascido , Rim/metabolismo , Masculino , Erros Inatos do Metabolismo/patologia , Triagem Neonatal , Fosforilação Oxidativa , Mapas de Interação de Proteínas , Ratos , Vacúolos/patologia
9.
Am J Hum Genet ; 108(11): 2130-2144, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34653363

RESUMO

Congenital disorders of glycosylation (CDGs) form a group of rare diseases characterized by hypoglycosylation. We here report the identification of 16 individuals from nine families who have either inherited or de novo heterozygous missense variants in STT3A, leading to an autosomal-dominant CDG. STT3A encodes the catalytic subunit of the STT3A-containing oligosaccharyltransferase (OST) complex, essential for protein N-glycosylation. Affected individuals presented with variable skeletal anomalies, short stature, macrocephaly, and dysmorphic features; half had intellectual disability. Additional features included increased muscle tone and muscle cramps. Modeling of the variants in the 3D structure of the OST complex indicated that all variants are located in the catalytic site of STT3A, suggesting a direct mechanistic link to the transfer of oligosaccharides onto nascent glycoproteins. Indeed, expression of STT3A at mRNA and steady-state protein level in fibroblasts was normal, while glycosylation was abnormal. In S. cerevisiae, expression of STT3 containing variants homologous to those in affected individuals induced defective glycosylation of carboxypeptidase Y in a wild-type yeast strain and expression of the same mutants in the STT3 hypomorphic stt3-7 yeast strain worsened the already observed glycosylation defect. These data support a dominant pathomechanism underlying the glycosylation defect. Recessive mutations in STT3A have previously been described to lead to a CDG. We present here a dominant form of STT3A-CDG that, because of the presence of abnormal transferrin glycoforms, is unusual among dominant type I CDGs.


Assuntos
Defeitos Congênitos da Glicosilação/genética , Genes Dominantes , Hexosiltransferases/genética , Proteínas de Membrana/genética , Doenças Musculoesqueléticas/genética , Doenças do Sistema Nervoso/genética , Adolescente , Adulto , Sequência de Aminoácidos , Domínio Catalítico , Pré-Escolar , Feminino , Heterozigoto , Hexosiltransferases/química , Humanos , Masculino , Proteínas de Membrana/química , Pessoa de Meia-Idade , Linhagem , Homologia de Sequência de Aminoácidos
10.
Mol Genet Metab Rep ; 29: 100795, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34504770

RESUMO

BACKGROUND: Inborn errors of metabolism (IEMs) refer to rare heterogeneous genetic disorders with various clinical manifestations that can cause serious physical and psychological sequelae. Results of previous studies on the impact of an IEM on health-related quality of life (HR-QoL) were incongruent and only few studies considered more broadly the psychological well-being of children with IEM and their families. Our objectives were to examine: (1) the impact of the IEM severity on the HR-QoL and psychological functioning of patients and their parents at baseline; and (2) its evolution over time; and (3) the correlation between parental and children's perspectives. Methods: The sample included 69 pediatric patients (mean age = 7.55 y, SD = 4.59) with evaluations at baseline and after one year. We collected data on HR-QoL, child mental health and emotional regulation as well as on parental mood and stress using different validated questionnaires. IEM severity was rated by a clinician through the biological subdomain of the pediatric INTERMED instrument. Results: Two groups of patients based on IEM severity scores were created (n = 31 with low and n = 38 with moderate/high IEM severity). The two groups differed with respect to age, diet and supplement intake. IEM severity had an impact on HR-QoL and behavioral symptoms in children, as well as on HR-QoL and stress in parents. For patients with moderate/high IEM severity, child and parental HR-QoL improved after 1-year of follow-up. We did not observe any significant difference between evaluations by patients versus parents. Conclusions: Our findings demonstrate that moderate/high IEM severity altered child and parental psychological well-being, but also revealed a significant improvement after one-year follow-up. This observation suggests that patients with a moderate/high IEM severity and their families benefit from the care of an interdisciplinary team including a child psychologist specialized in IEMs. Moreover, in patients with higher IEM severity there may also be more room for improvement compared to patients with low IEM severity. Future studies should focus on observations over a larger time span, particularly during adolescence, and should include objective measurements.

11.
Mol Genet Metab Rep ; 28: 100777, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34258226

RESUMO

BACKGROUND: In NANS deficiency, biallelic mutations in the N-acetylneuraminic acid synthase (NANS) gene impair the endogenous synthesis of sialic acid (N-acetylneuraminic acid) leading to accumulation of the precursor, N-acetyl mannosamine (ManNAc), and to a multisystemic disorder with intellectual disability. The aim of this study was to determine whether sialic acid supplementation might be a therapeutic avenue for NANS-deficient patients. METHODS: Four adults and two children with NANS deficiency and four adult controls received oral NeuNAc acid (150 mg/kg/d) over three days. Total NeuNAc, free NeuNAc and ManNAc were analyzed in plasma and urine at different time points. RESULTS: Upon NeuNAc administration, plasma free NeuNAc increased within hours (P < 0.001) in control and in NANS-deficient individuals. Total and free NeuNAc concentrations also increased in the urine as soon as 6 h after beginning of oral administration in both groups. NeuNAc did not affect plasma and urinary ManNAc, that remained higher in NANS deficient subjects than in controls (day 1-3; all P < 0.01). Oral NeuNAc was well tolerated with no significant side effects. DISCUSSION: Orally administered free NeuNAc was rapidly absorbed but also rapidly excreted in the urine. It did not change ManNAc levels in either patients or controls, indicating that it may not achieve enough feedback inhibition to reduce ManNAc accumulation in NANS-deficient subjects. Within the limitations of this study these results do not support a potential for oral free NeuNAc in the treatment of NANS deficiency but they provide a basis for further therapeutic approaches in this condition.

12.
Mol Genet Metab ; 133(2): 157-181, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33965309

RESUMO

Glutaric aciduria type I (GA-I, OMIM # 231670) is an inborn error of metabolism caused by a deficiency of glutaryl-CoA dehydrogenase (GCDH). Patients develop acute encephalopathic crises (AEC) with striatal injury most often triggered by catabolic stress. The pathophysiology of GA-I, particularly in brain, is still not fully understood. We generated the first knock-in rat model for GA-I by introduction of the mutation p.R411W, the rat sequence homologue of the most common Caucasian mutation p.R402W, into the Gcdh gene of Sprague Dawley rats by CRISPR/CAS9 technology. Homozygous Gcdhki/ki rats revealed a high excretor phenotype, but did not present any signs of AEC under normal diet (ND). Exposure to a high lysine diet (HLD, 4.7%) after weaning resulted in clinical and biochemical signs of AEC. A significant increase of plasmatic ammonium concentrations was found in Gcdhki/ki rats under HLD, accompanied by a decrease of urea concentrations and a concomitant increase of arginine excretion. This might indicate an inhibition of the urea cycle. Gcdhki/ki rats exposed to HLD showed highly diminished food intake resulting in severely decreased weight gain and moderate reduction of body mass index (BMI). This constellation suggests a loss of appetite. Under HLD, pipecolic acid increased significantly in cerebral and extra-cerebral liquids and tissues of Gcdhki/ki rats, but not in WT rats. It seems that Gcdhki/ki rats under HLD activate the pipecolate pathway for lysine degradation. Gcdhki/ki rat brains revealed depletion of free carnitine, microglial activation, astroglyosis, astrocytic death by apoptosis, increased vacuole numbers, impaired OXPHOS activities and neuronal damage. Under HLD, Gcdhki/ki rats showed imbalance of intra- and extracellular creatine concentrations and indirect signs of an intracerebral ammonium accumulation. We successfully created the first rat model for GA-I. Characterization of this Gcdhki/ki strain confirmed that it is a suitable model not only for the study of pathophysiological processes, but also for the development of new therapeutic interventions. We further brought up interesting new insights into the pathophysiology of GA-I in brain and periphery.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/genética , Encefalopatias Metabólicas/genética , Encéfalo/metabolismo , Gliose/genética , Glutaril-CoA Desidrogenase/deficiência , Glutaril-CoA Desidrogenase/genética , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Erros Inatos do Metabolismo dos Aminoácidos/patologia , Animais , Arginina/metabolismo , Encéfalo/patologia , Encefalopatias Metabólicas/metabolismo , Encefalopatias Metabólicas/patologia , Creatina/sangue , Modelos Animais de Doenças , Técnicas de Introdução de Genes , Gliose/metabolismo , Gliose/patologia , Glutaril-CoA Desidrogenase/metabolismo , Humanos , Lisina/metabolismo , Erros Inatos do Metabolismo/genética , Erros Inatos do Metabolismo/metabolismo , Ratos
13.
Artigo em Alemão | MEDLINE | ID: mdl-33906241

RESUMO

BACKGROUND: Pompe disease is a lysosomal multisystem disorder with predominant proximal myopathy. Treatment with enzyme replacement therapy (ERT) is available requiring life-long biweekly infusions of recombinant α-glucosidase. To minimize the burden of ERT patients ask for home infusion therapy. AIMS AND METHODS: Pompe disease experts from Germany, Austria, and Switzerland discussed in two consensus meetings in 2019 and 2020 requirements for home infusion therapy, adequate execution of treatment, and the legal situation for delegating physicians. RESULTS AND DISCUSSION: Home infusion therapy is principally feasible for patients with Pompe disease if certain preconditions are fulfilled, but the decision to implement has to be made on an individual basis. The treating physician delegates the execution of ERT ad personam to nursing staff but retains full legal responsibility. Home infusion therapy has to be carried out by specially trained and qualified staff. Infusion-related risks comprise mainly allergic reactions, and adequate medical treatment must be warranted. In German-speaking countries, clear rules for conducting home infusion therapy are needed to reduce psychosocial stress for patients with Pompe disease, and providing legal certainty for delegating physicians.

14.
Fortschr Neurol Psychiatr ; 89(12): 630-636, 2021 Dec.
Artigo em Alemão | MEDLINE | ID: mdl-33561874

RESUMO

BACKGROUND: Pompe disease is a lysosomal multisystem disorder with predominant proximal myopathy. Treatment with enzyme replacement therapy (ERT) is available requiring life-long biweekly infusions of recombinant α-glucosidase. To minimize the burden of ERT patients ask for home infusion therapy. AIMS AND METHODS: Pompe disease experts from Germany, Austria, and Switzerland discussed in two consensus meetings in 2019 and 2020 requirements for home infusion therapy, adequate execution of treatment, and the legal situation for delegating physicians. RESULTS AND DISCUSSION: Home infusion therapy is principally feasible for patients with Pompe disease if certain preconditions are fulfilled, but the decision to implement has to be made on an individual basis. The treating physician delegates the execution of ERT ad personam to nursing staff but retains full legal responsibility. Home infusion therapy has to be carried out by specially trained and qualified staff. Infusion-related risks comprise mainly allergic reactions, and adequate medical treatment must be warranted. In German-speaking countries, clear rules for conducting home infusion therapy are needed to reduce psychosocial stress for patients with Pompe disease, and providing legal certainty for delegating physicians.


Assuntos
Doença de Depósito de Glicogênio Tipo II , Terapia por Infusões no Domicílio , Consenso , Terapia de Reposição de Enzimas , Alemanha , Doença de Depósito de Glicogênio Tipo II/tratamento farmacológico , Humanos
15.
J Inherit Metab Dis ; 44(3): 566-592, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33595124

RESUMO

Isolated methylmalonic acidaemia (MMA) and propionic acidaemia (PA) are rare inherited metabolic diseases. Six years ago, a detailed evaluation of the available evidence on diagnosis and management of these disorders has been published for the first time. The article received considerable attention, illustrating the importance of an expert panel to evaluate and compile recommendations to guide rare disease patient care. Since that time, a growing body of evidence on transplant outcomes in MMA and PA patients and use of precursor free amino acid mixtures allows for updates of the guidelines. In this article, we aim to incorporate this newly published knowledge and provide a revised version of the guidelines. The analysis was performed by a panel of multidisciplinary health care experts, who followed an updated guideline development methodology (GRADE). Hence, the full body of evidence up until autumn 2019 was re-evaluated, analysed and graded. As a result, 21 updated recommendations were compiled in a more concise paper with a focus on the existing evidence to enable well-informed decisions in the context of MMA and PA patient care.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Erros Inatos do Metabolismo dos Aminoácidos/terapia , Acidemia Propiônica/diagnóstico , Acidemia Propiônica/terapia , Gerenciamento Clínico , Humanos
16.
Am J Nucl Med Mol Imaging ; 11(6): 519-528, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35003889

RESUMO

INTRODUCTION: Evaluation of glomerular filtration rate is very important in both preclinical and clinical setting, especially in the context of chronic kidney disease. It is typically performed using 51Cr-EDTA or by imaging with 123I-Hippuran scintigraphy, which has a significantly lower resolution and sensitivity as compared to PET. 68Ga-EDTA represents a valid alternative due to its quick availability using a 68Ge/68Ga generator, while PET/CT enables both imaging of renal function and accurate quantitation of clearance of activity from both plasma and urine. Therefore, we aimed at investigating the use of 68Ga-EDTA as a preclinical tracer for determining renal function in a knock-in rat model known to present progressive decline of renal function. METHODS: 68Ga-EDTA was injected in 23 rats, either wild type (n=10) or knock-in (n=13). By applying a unidirectional, two-compartment model and Rutland-Patlak Plot linear regression analysis, split renal function was determined from the age of 6 weeks to 12 months. RESULTS: Glomerular filtration ranged from 0.025±0.01 ml/min at 6 weeks to 0.049±0.05 ml/min at 6 months in wild type rats. Glomerular filtration was significantly lower in knock-in rats at 6 and 12 months (P<0.01). No significant difference was observed in renal volumes between knock-in and wild type animals, based on imaging-derived volume calculations. CONCLUSIONS: 68Ga-EDTA turned out to be a very promising PET/CT tracer for the evaluation of split renal function. This method allowed detection of progressive renal impairment in a knock-in rat model. Additional validation in a human cohort is warranted to further assess clinical utility in both, healthy individuals and patients with renal impairment.

17.
Front Neurol ; 11: 516799, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33192963

RESUMO

Biotinidase deficiency is an autosomal recessive disorder in which affected individuals are unable to recycle biotin. Untreated, children usually exhibit hypotonia, seizures, ataxia, developmental delay, and/or hearing loss. Individuals diagnosed by newborn screening have an excellent prognosis with life-long biotin supplementation. We report a young adult diagnosed with profound biotinidase deficiency by newborn screening who was asymptomatic while on therapy. At 18 years of age, 6 months after voluntarily discontinuation of biotin, he developed a progressive distal muscle weakness. Molecular analysis of the BTD gene showed a pathogenic homozygous duplication c.1372_1373dupT p.(Cys458LeufsTer26) (1). Despite 16 months since reintroduction of biotin, muscle strength only partially recovered. Transition to adulthood in chronic metabolic diseases is known to be associated with an increased risk for non-compliance. Neurological findings in this adult are similar to those described in others with adult-onset biotinidase deficiency. Long-term prognosis in non-compliant symptomatic adult with biotinidase deficiency likely depends on the delay and/or severity of intervening symptoms until reintroduction of biotin.

18.
Genet Med ; 22(10): 1589-1597, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32820246

RESUMO

PURPOSE: Biallelic CAD variants underlie CAD deficiency (or early infantile epileptic encephalopathy-50, [EIEE-50]), an error of pyrimidine de novo biosynthesis amenable to treatment via the uridine salvage pathway. We further define the genotype and phenotype with a focus on treatment. METHODS: Retrospective case series of 20 patients. RESULTS: Our study confirms CAD deficiency as a progressive EIEE with recurrent status epilepticus, loss of skills, and dyserythropoietic anemia. We further refine the phenotype by reporting a movement disorder as a frequent feature, and add that milder courses with isolated developmental delay/intellectual disability can occur as well as onset with neonatal seizures. With no biomarker available, the diagnosis relies on genetic testing and functional validation in patient-derived fibroblasts. Underlying pathogenic variants are often rated as variants of unknown significance, which could lead to underrecognition of this treatable disorder. Supplementation with uridine, uridine monophosphate, or uridine triacetate in ten patients was safe and led to significant clinical improvement in most patients. CONCLUSION: We advise a trial with uridine (monophosphate) in all patients with developmental delay/intellectual disability, epilepsy, and anemia; all patients with status epilepticus; and all patients with neonatal seizures until (genetically) proven otherwise or proven unsuccessful after 6 months. CAD deficiency might represent a condition for genetic newborn screening.


Assuntos
Epilepsia , Espasmos Infantis , Suplementos Nutricionais , Humanos , Recém-Nascido , Estudos Retrospectivos , Uridina
19.
J Inherit Metab Dis ; 42(2): 333-352, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30773687

RESUMO

AIM: To explore the clinical presentation, course, treatment and impact of early treatment in patients with remethylation disorders from the European Network and Registry for Homocystinurias and Methylation Defects (E-HOD) international web-based registry. RESULTS: This review comprises 238 patients (cobalamin C defect n = 161; methylenetetrahydrofolate reductase deficiency n = 50; cobalamin G defect n = 11; cobalamin E defect n = 10; cobalamin D defect n = 5; and cobalamin J defect n = 1) from 47 centres for whom the E-HOD registry includes, as a minimum, data on medical history and enrolment visit. The duration of observation was 127 patient years. In 181 clinically diagnosed patients, the median age at presentation was 30 days (range 1 day to 42 years) and the median age at diagnosis was 3.7 months (range 3 days to 56 years). Seventy-five percent of pre-clinically diagnosed patients with cobalamin C disease became symptomatic within the first 15 days of life. Total homocysteine (tHcy), amino acids and urinary methylmalonic acid (MMA) were the most frequently assessed disease markers; confirmatory diagnostics were mainly molecular genetic studies. Remethylation disorders are multisystem diseases dominated by neurological and eye disease and failure to thrive. In this cohort, mortality, thromboembolic, psychiatric and renal disease were rarer than reported elsewhere. Early treatment correlates with lower overall morbidity but is less effective in preventing eye disease and cognitive impairment. The wide variation in treatment hampers the evaluation of particular therapeutic modalities. CONCLUSION: Treatment improves the clinical course of remethylation disorders and reduces morbidity, especially if started early, but neurocognitive and eye symptoms are less responsive. Current treatment is highly variable. This study has the inevitable limitations of a retrospective, registry-based design.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Erros Inatos do Metabolismo dos Aminoácidos/terapia , Homocistinúria/metabolismo , Metilenotetra-Hidrofolato Redutase (NADPH2)/deficiência , Espasticidade Muscular/metabolismo , Vitamina B 12/metabolismo , Adolescente , Adulto , Idade de Início , Criança , Pré-Escolar , Estudos Transversais , Progressão da Doença , Europa (Continente) , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Metilação , Metilenotetra-Hidrofolato Redutase (NADPH2)/metabolismo , Ácido Metilmalônico/urina , Fenótipo , Gravidez , Transtornos Psicóticos/metabolismo , Sistema de Registros , Estudos Retrospectivos , Adulto Jovem
20.
Mol Genet Metab ; 126(4): 416-428, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30686684

RESUMO

Glutaric Aciduria type I (GA-I) is caused by mutations in the GCDH gene. Its deficiency results in accumulation of the key metabolites glutaric acid (GA) and 3-hydroxyglutaric acid (3-OHGA) in body tissues and fluids. Present knowledge on the neuropathogenesis of GA-I suggests that GA and 3-OHGA have toxic properties on the developing brain. We analyzed morphological and biochemical features of 3D brain cell aggregates issued from Gcdh-/- mice at two different developmental stages, day-in-vitro (DIV) 8 and 14, corresponding to the neonatal period and early childhood. We also induced a metabolic stress by exposing the aggregates to 10 mM l-lysine (Lys). Significant amounts of GA and 3-OHGA were detected in Gcdh-/- aggregates and their culture media. Ammonium was significantly increased in culture media of Gcdh-/- aggregates at the early developmental stage. Concentrations of GA, 3-OHGA and ammonium increased significantly after exposure to Lys. Gcdh-/- aggregates manifested morphological alterations of all brain cell types at DIV 8 while at DIV 14 they were only visible after exposure to Lys. Several chemokine levels were significantly decreased in culture media of Gcdh-/- aggregates at DIV 14 and after exposure to Lys at DIV 8. This new in vitro model for brain damage in GA-I mimics well in vivo conditions. As seen previously in WT aggregates exposed to 3-OHGA, we confirmed a significant ammonium production by immature Gcdh-/- brain cells. We described for the first time a decrease of chemokines in Gcdh-/- culture media which might contribute to brain cell injury in GA-I.


Assuntos
Compostos de Amônio/análise , Encéfalo/citologia , Quimiocinas/análise , Meios de Cultura/análise , Glutaril-CoA Desidrogenase/genética , Erros Inatos do Metabolismo dos Aminoácidos/genética , Compostos de Amônio/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Encefalopatias Metabólicas/genética , Técnicas de Cultura de Células , Quimiocinas/metabolismo , Meios de Cultura/metabolismo , Glutaril-CoA Desidrogenase/deficiência , Lisina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Tecidos Suporte
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...